Почему мы взяли такое значение массы? Мы выбрали для расчетов звезду такого размера, поскольку надеялись, что на одной из поздних стадий своего развития такая звезда пройдет через область, в которой существуют переменные звезды определенного типа: так называемые цефеиды. К тому времени еще никому не удавалось понять, как обычная звезда из главной последовательности в ходе своего развития превращается в переменную звезду типа Дельты Цефея. Теперь же, обладая мощным методом Хенея, мы получили надежду достичь этой цели. И действительно оказалось, что наша звезда во время своего развития даже несколько раз проходит через область существования переменных звезд. Однако мы немного забежали вперед. Прежде всего я должен по порядку рассказать, что происходит со звездой с массой в 7 раз больше солнечной.
История звезды с массой в 7 раз больше солнечной
С этого момента началась история звезды с массой в 7 раз больше солнечной.
В марте 1963 г. наша звезда мы выбрали для нее массу в 7 раз больше массы Солнца не только покинула главную последовательность, но и переместилась в область красных сверхгигантов, где в ее недрах началась ядерная реакция превращения гелия в углерод. Мы послали телеграмму в Беркли: «Метод Хенея начал работать в Мюнхене. Спасибо!»
В это время в нашем Институте физики им. Макса Планка уже работал астроном Альфред Вайгерт. Он вместе с юной специалисткой по вычислительной математике Эмми Хофмейстер был готов начать расчеты с помощью метода Хенея. Вычислительные возможности бывшего астрофизического отделения Института физики, которое к тому времени превратилось в отдельный институт астрофизики, существенно расширились, и поэтому путь был открыт. Мы хотели довести тяжелую звезду из главной последовательности до стадии красного гиганта. Прежние методы расчета не позволяли при работе с большими звездами даже выйти за пределы главной последовательности.
Путь развития тяжелых звезд развития, которая до сих пор никак не поддавалась изучению! Осенью 1962 г. я возвратился в Мюнхен после пребывания в Пасадене. У меня в кармане были мои разработки по методу Хенея.
Хеней не принадлежал к числу ученых, которые работают быстро и публикуют много статей. Поэтому в тот день все, кто интересовался теорией развития звезд, собрались послушать его доклад. Я ничего тогда не понял, но прилежно все записал. Затем после конгресса, в течение полугода работая у Мартина Шварцшильда в Принстоне, я был свидетелем того, как Шварцшильд по своим запискам полностью восстановил метод, изложенный в докладе Хенея. Я тоже разыскал свои записи и смог за несколько дней разобраться в методе Хенея. Шварцшильд применил этот метод к задаче, которая его особенно в то время занимала, о горении гелия в звездах типа Солнца. Спустя некоторое время ему удалось «преодолеть» этот быстрый, взрывной этап развития звезд. Метод Хенея помог ему исследовать стадию
На его заседаниях было сделано множество докладов по специальным разделам астрофизики. Один из них был прочитан Луи Хенеем, который в то время работал на астрономическом факультете Университета в Беркли. Доклад был посвящен новому методу расчета для моделей развития звезд. К тому моменту прошло уже некоторое время с тех пор, как Хеней создал свой новый метод. За несколько лет до конгресса его группа опубликовала статью, посвященную новому методу. Но тогда еще никому в том числе и, вероятно, самому Хенею не было ясно, чего можно добиться с его помощью. Однако за время, прошедшее до начала конгресса в Беркли, авторам удалось существенно упростить и улучшить свой метод.
В августе 1961 г. состоялся конгресс Международного астрономического союза в Беркли (Калифорния). Это был первый из подобных конгрессов, на котором мне довелось присутствовать.
На обратной стороне Луны есть кратер Хеней. Международный астрономический союз дал ему это имя в 1970 г. в честь умершего тогда Луи Хенея, который успешно работал в различных областях астрофизики. Но наибольшее влияние на судьбу этой науки оказал открытый им новый метод расчета, который сегодня все называют методом Хенея (В нашей стране он называется методом прогонки. Прим. ред.).
В это время на рынке стали появляться все более мощные модели компьютеров, однако это мало помогло астрофизикам. Хойл со своими сотрудниками пытался с помощью численных методов проследить развитие тяжелых звездно без особых успехов. Шварцшильд тоже предпринял неудачную попытку «пробиться» через стадию горения гелия у звезд с массой, близкой к массе Солнца. В это время в Японии работала группа физика Дзусиро Хаяси, которой удалось с помощью очень упрощенной модели, используя арифмометры, практически вручную показать, какая судьба ожидает тяжелые звезды после того, как в их центре исчерпаются запасы водорода. Позже оказалось, что работа японских исследователей дала в общих чертах правильные результаты. Но это стало ясно только после открытия нового метода расчета.
С тяжелыми звездами дело обстояло еще хуже. В них горение водорода происходит во внутренней, конвективной зоне. Модель должна была предсказывать, что происходит в этой зоне при постепенном выгорании водорода. Оказалось, что при большом обеднении исходной водород-содержащей смеси компьютер «заходил в тупик». Астрофизики ни разу не смогли довести расчет для тяжелых звезд до стадии красных гигантов, что удалось Хойлу и Шварцшильду для звезд типа Солнца. В таком состоянии дело находилось до конца 50-х годов.
После появления работы Хойла и Шварцшильда в 1955 г. развитие теоретических представлений об эволюции звезд солнечного типа приостановилось. То же самое относится и к теории звезд, масса которых не слишком сильно отличается от солнечной. Модельные расчеты позволили установить, что когда эти звезды попадают в область красных гигантов, температуры в их недрах достигают 100 миллионов градусов. При этой температуре должно начаться превращение гелия в углерод. Но как только в модель для первой ядерной реакции подставляли данные для нового источника энергии, старый метод расчета переставал работать. В то время уже было известно, что гелий выгорает в недрах красных гигантов очень быстро и неравномерно. Это установил еще в 1952 г. Леон Местель в своей кембриджской диссертации. Но тогда никто не догадывался, что, пользуясь прежним методом расчета, принципиально невозможно построить работоспособную модель на ЭВМ.
Луи Хеней и его метод
Постороннему человеку может показаться удивительным, что в решении той или иной вычислительной задачи новый метод расчета часто дает даже больше, чем появление более мощных и современных компьютеров. Но ведь никто не удивляется, когда наблюдательная астрономия делает существенный шаг вперед после появления нового телескопа или запуска специального астрономического спутника. Открытие новых математических методов служит той же цели, только это не так очевидно: математические методы нельзя изобразить с помощью моделей из дерева или картона, их нельзя сфотографировать и показать на экране в виде красочного слайда, а применять их начинают без церемонии торжественного пуска с перерезанием красной ленточки.
Но, к сожалению, оказалось не так-то просто проследить с помощью компьютера за судьбой тяжелых звезд вплоть до поздних стадий развития. Даже появление в послевоенные годы больших вычислительных машин, которые могли проводить расчеты быстрее и лучше, чем прежде, не слишком помогло в решении такой задачи. Чтобы исследовать эволюцию звезд, нужно было создать новый метод расчета.
Результаты эксперимента по взаимодействию нейтрино с хлором, не нашедшие своего объяснения до сегодняшнего дня, не слишком встревожили астрофизиков. Это объясняется тем, что в подавляющем числе случаев результаты моделирования на ЭВМ очень хорошо совпадают с данными астрономических наблюдений. Об этом и пойдет речь в данной главе. Мы расскажем о развитии звезд, масса которых существенно превышает массу Солнца. В тяжелых звездах запасы ядерного горючего истощаются быстрее, и поэтому в природе звезды такого типа находятся на более поздних стадиях развития, чем наше Солнце. На примере тяжелых звезд астрофизики могут сравнить предсказания компьютерных моделей для поздних фаз развития звезд и реальные процессы, происходящие во Вселенной.
Глава 6. Путь развития тяжелых звезд
Пользовательского поиска
Глава 6. Путь развития тяжелых звезд [1990 Киппенхан Р. - 100 миллиардов Солнц: Рождение, жизнь и смерть звезд]
Комментариев нет:
Отправить комментарий